If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+18a-73=0
a = 1; b = 18; c = -73;
Δ = b2-4ac
Δ = 182-4·1·(-73)
Δ = 616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{616}=\sqrt{4*154}=\sqrt{4}*\sqrt{154}=2\sqrt{154}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{154}}{2*1}=\frac{-18-2\sqrt{154}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{154}}{2*1}=\frac{-18+2\sqrt{154}}{2} $
| 3=4b | | 12=16y | | (3b-7)+(4b+5)=180 | | 4x-14=7x+25 | | (3x+4)=60 | | 23j=115 | | (3x+4)=600 | | (3(b-7)+(4b+5)=180 | | 30+.15x=36 | | 2b+b=360 | | 4(b+4)=19+4b | | 3.6n+7=1.1n-3 | | 7.56+x=19.6 | | -11+3n+7n=n-2 | | x+2=96 | | 120+(6v)=180 | | 2)x+3x=20 | | √2-x=x-2 | | 7n=-50 | | 2x+6+4x+12=10x-24 | | x*(x+1)+x*(x+1)=30 | | -2z+1-z=-24 | | 103+(7e)=180 | | x+9=18 | | 12x-3=-5 | | 71.68=5.6r | | 4n+17-4n=14 | | 3x-15=2.5x+5 | | 3y/4=0.25 | | 4y=6y-40 | | 83+(4t+5)=180 | | −(3x+8)=4(1−x) |